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Abstract—Understanding how to reproduce robust and reli-
able decision making behavior in neuromorphic systems can
be useful for developing information processing architectures
in subthreshold analog circuits as well as future emerging
nano-technologies, that comprise inhomogeneous and unreliable
components. To this end, we explore the computational properties
of a recurrent neural network, implemented in a custom mixed
signal analog/digital neuromorphic chip, for realizing perceptual
decision-making, bi-stable perception, and working memory. The
chip comprises conductance-based integrate-and-fire neurons and
configurable synapses with realistic dynamics. These circuits are
configured to implement a recurrent neural network, composed
of excitatory and inhibitory pools of silicon neurons coupled
with local excitation and global inhibition. We show how the
interplay between excitation and inhibition produces competitive
winner-take-all dynamics, which is a feature of decision-making
and persistent activity models, and demonstrate that the system
generates reliable dynamics capable of reproducing both neuro-
physiological data and psycho-physical performances in coding
and collective distributed computation.

I. INTRODUCTION

Much effort is currently being invested in the quest for
developing new computing paradigms for information and
communication technologies (ICT): fundamental notions are
being revised and fundamental characteristics of new mate-
rials are being explored to develop new types of computing
systems that can go beyond the Complementary Metal–Oxide–
Semiconductor (CMOS) era. In this work we address this
challenge by taking inspiration from the efficiency and robust-
ness of neuro-biological systems: we study an implementation
of a brain-inspired model of basic computational primitives
which uses low-power mixed signal subthreshold analog and
asynchronous digital circuits to implement a network of
spiking neurons and synapses. Despite the variability and
heterogeneity observed in the analog circuits, we demonstrate
a reliable neuromorphic implementation of neural processes
involved in the foundations of bistable perception, decision
making, and working memory.

The ability of embodying information in the dynamics of
a recurrent neural network, which can persist also in the
absence of external stimulation and transition between meta-
stable states, represents a fundamental processing capability
of neural systems. We use the framework of recurrent neural

networks and meta-stable attractor states to emulate processes
that are at the basis of bistable perception, decision making,
and working memory. The study of the collective dynamics of
multiple neural populations with attractor states has been the
subject of a good deal of investigation. This class of network
is considered a basic building block for expressing different
forms of computation in many different neural systems. In
particular, reverberating states of cortical activity are thought
to underlie important cognitive processes and functions: it has
been shown for example that attractor networks in cerebral
cortex are important for long-term memory [1], [2], short-term
memory [3]–[5], contextual mental states [6], attention [7],
bistable perception [8], [9], and perceptual decision mak-
ing [10]–[12]. In biological inspired neural network models,
it has often been assumed that an attractor in phase space
represents an internal or an external source of information [13],
[14]. From a biological perspective, recurrent spiking neural
network models have expressed the dynamics of bistability in
their firing rates. In this work we configured a neuromorphic
VLSI chip comprising spiking neurons and dynamic synapses
to implement recurrent neural networks with excitatory and
inhibitory connections (implementing positive and negative
feedback loops respectively). We configured the circuits to
implement cortical neural network models and analyzed their
dynamics by measuring the neuron’s spikes and calculating
their mean firing rates.

The paper is organized as follow: in the methods section,
we describe the cortical network architecture and its imple-
mentation in neuromorphic hardware. In the results section we
show how the VLSI network architecture gives rise to bistable
dynamics and demonstrate that these network dynamics can
reproduce measured psychometric functions in a two choice
discrimination task [15]–[17]. In Section IV we discuss the
results and present the concluding remarks.

II. MATERIALS AND METHODS

A. Neuromorphic Very Large Scale Integration (VLSI) System

We use an analog/digital mixed signal VLSI neuromorphic
device that contains implementations of silicon neurons and
synapses using subthreshold analog circuits, and asynchronous
memory and communication blocks [18] (see Fig. 1a). Every
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Fig. 1: a The Neuromorphic VLSI chip, it contains an array of 58 analog
integrate-and-fire neurons and programmable synapses implemented with a 4
bit SRAM. b The network consists of three populations of neurons (A, B, bg)
recurrently connected. The connectivity in the network is random and sparse.
Connectivity levels are as indicated in the diagram.

neuron has 32 programmable synaptic inputs, with synaptic
weights stored in 4 bit digital programmable Static Random
Access Memory (SRAM) cells. We use the neuromorphic chip
interfaced to a standard workstation, via an FPGA board that
acts as a mapper [19] to send, receive and route spikes to and
from the chip. Additionally the mapper stores the synaptic
weight matrix that is used to program the chip’s SRAM cells.
The neuromorphic chip is also connected to a daughter which
is used to configure the analog parameters of the synapses and
neurons in the chip. Figure 1a shows the arcturecture of the
neuromorphic processor: asynchronous digital events coming
from the mapper board are decoded at the input decoder;
based on the decoded address the spikes are delivered to one
of the excitatory or inhibitory SRAM synapses, or to one
of the plastic synapses. The synapses then produce currents
with biologically plausible dynamics that are integrated by
the neuron. If these integrated inputs are sufficiently large,
then the neuron generates a spike that is sent outside via the
Address Event Representation (AER) output interface.

The architecture of the network is illustrated in Fig. 1b:
it is organized in three populations of neurons, A, B, and
background (bg). The number of neurons in population A and
B is Na = Nb = 22 while the background population counts
Nbg = 12 neurons. Each population is recurrently connected,
with sparse connectivity. Populations A and B inhibit each
other via direct inhibitory connections. The connectivity factor
c in Fig. 1b refers to the mean number of connections that
a neuron makes with other neurons randomly chosen in the
target population. The background population provides exci-
tation to populations A and B. We calibrated the architecture
parameters such that the two pools of neurons A and B exhibit
meta-stable states of activity. The calibration method is based
on mean field analysis as described in [20].

III. RESULTS

A. Discrimination of distinct stimuli and basins of attraction

Long-lasting spiking activity in the cortex, that lasts much
longer than the typical time scales of synapses and membrane
potentials, is the neural correlate of working memory and per-
ceptual decision making. In theoretical neuroscience models
this activity is assumed to encode sensory inputs which relate

to different alternative possible decisions or percepts [16].
This activity is accumulated in different pools of neurons that,
due to their recurrent excitatory connections, are capable of
sustaining persistent activity, even after the input stimulus
that triggered it is removed. Previous theoretical work has
demonstrated that neural circuits of the type shown in Fig. 1b
can account for salient characteristics of the neural correlates
of perceptual decision making such as psychometric functions
and reaction times [16], [17].

We emulated a two choice discrimination task using the two
pools of silicon neurons described in Section II-A. In partic-
ular, we reproduced the results of a classical neuroscience
experiment denoted as the two alternative random moving
dots task. In this experiment, monkeys or human subjects
have to report the net direction of perceived motion (left or
right) of a patch of moving dots on a screen, as a function
of the amount of coherently moving dots in one direction,
versus the amount of dots moving in random directions.
While performing the task, subjects accumulate evidences for
a decision and report the perceived direction of motion as
quickly as possible. The decision process is triggered when
the accumulation of evidence reaches a threshold. The speed
of execution of the task depends on the motion coherence
(percentage of coherently moving dots in a given direction).
In our experiment we bypassed the visual processing stages
and stimulated the populations of neurons representing the
perception of moving dots directly with computer generated
spike trains. In particular, during the stimulation phase, we
stimulated both populations A and B with inhomogeneous
Poisson spike trains that represent the activity of the middle
temporal (MT) visual area during a random moving dots task.
In addition, we stimulated all neurons chip with a Poisson
spike train of 10Hz to represent background activity. The mean
rates of the input stimuli are expressed as:

ν i
a = ν0 −α ·ν i

coh
ν i

b = ν0 +α ·ν i
coh

(1)

where ν0 is the base stimulation frequency, α represents a
ramping coefficient, ν i

coh represents the percentage of motion
coherence, and i indicates the experiment trial. The coherence
factor ν i

coh is limited in the range: 0< ν i
coh < 100. Therefore, if

νcoh is large, the two populations will receive largely different
inputs: νa will be large and νb will be small. The competition
between the two neural populations will eventually collapse
in one of the two attractor states. The persistent activity that
remains after the input stimulus removal, will be sustained by
the recurrent network dynamics. This mnemonic delay period
is the neural correlate of working memory. The choice of the
network is probed by means of a threshold on the mean firing
rates (νthr = 50Hz): when one of the two population exceed
this threshold than we assume that the network dynamics has
committed to a decision. The time required for the two pools
of neurons to finish the competition represents the reaction
time of the trial. For trials in which the coherence is equal to
zero, the two input stimuli have the same mean frequencies,
which indicate a non informative input. While for coherence
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Fig. 2: Neurometric functions. Every dot represents the mean of 300 trials.
Error bars are the standard deviation. As the coherence level increases the
performances increase. Moreover, the reaction time decrease with an increase
coherence of the input stimuli which represents an easier discrimination trial.

levels close to 100%, the mean input frequencies are about
νa = 100Hz and νb = 0Hz indicating a complete coherent
stimulus.

The decision space can be well represented by a 2D plot in
the frequency space νa, νb. Such a figure describes the time
spent by the two populations of neurons at different firing rate
frequencies. In Fig. 3 we show three different cases in which
the input stimulus was at different coherence levels. On the
x-axis we plot the mean firing rate frequency for population
A, and on the y-axis we plot the firing rate for population B.
Every plot in Fig. 3a, 3c, 3e is the average over 300 trials.
At the beginning of the trial, the network dynamics is slowly
moved from the spontaneous activity state (νa ∼ νb ∼ 5Hz) to
a point in which both populations are firing at higher rate. In
this phase, the rate of the two populations strictly depends on
the input stimuli and the network is integrating evidences for
the subsequent decision. After 200 ms from the presentation
of the stimulus, the input is removed from the network and the
network dynamics collapses in one of the two attractor states A
or B. The collapse in one of the two attractor state is the neural
correlates of a decision. When the mean firing rate activity is
higher for population A (or B) then the network choice is A (or
B). In Fig. 3a is shown the decision space for trials in which
the coherence level was 0. This means that the network had
equal information about the inputs and the choice was made
at chance level (∼ 50%). In Fig. 3b ten trials are shown in a
mean rates plot. As you can see, after the stimulus removal at
0.2s one of the two population smoothly switches off while
the other increases its firing rate. Note that it is not possible to
end with both populations firing at elevated reverberant state
as the two pools of neurons inhibit each other. Figures 3a, 3b
evidence that the choice A and B where almost equiprobable
and the network was performing at chance level.

When the coherence of the input stimulus increases the
network performs better than chance level. For high coherence
of the input, the network is always making the correct decision
(see Fig. 2). Figure 2 shows the psychometric functions for
six different levels of input coherence. Every dot in the
psychometric function is the average over 300 trials. The
reaction time indicates the difficulty of the trial. In fact the
reaction time decreases for higher coherence of the input
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Fig. 3: Decision space and mean rate plots. a, b: ν1
coh = 1 %, c, d: ν2

coh
= 20 %, and e, f: ν3

coh = 100 %. Plots a, c, e represent the average of
300 trials and they show the averaged network activity, i.e. the mean rate
frequency of populations A and B. Figures. b, d, f show the mean firing rates
for ten trials for different coherence levels. The square wave at the top of
Fig. d indicates that the stimulation phase lasts 200ms and that at 1.4s an
inhibitory stimulus is used to suppress reverberant network activity. After the
stimulus removal t = 0.2, network activity collapses in one of the two attractor
states. The density for the A choice decrease as the coherence level for the
opposite stimulus increase. This is evident from the smaller blue central blob
that gradually decrease in size, from 3a, 3c, to 3e.

stimuli while for low coherence stimuli it saturates around 320
ms, visible in Fig. 2b. The fine tuning of the reaction time can
be achieved by driving, with the external input, the system in
the proximity of the bifurcation value [17]. This tuning has
been exploited in order to achieve biological realistic reaction
time as indicated in Fig. 2b.

B. Dynamics of perceptual bistability

When the recurrent connections among neurons that are part
of the same population (A, B in Fig. 1b) are strong enough, the
network operates in a winner-take-all regime. In this regime,
only one excitatory population can be in the attractor state at
any point in time. Point-attractor neural networks have two
types of stable fixed points of the network dynamics. They
exhibit a spontaneous state with a low firing rate (down state),
and one or more persistent states with high firing rates in which
the activity of the network tends to be stable (attractor or up
state). The system will react to external stimulation, i.e. to a
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Fig. 4: Bistable dynamics. Populations mean firing rate over time. The input to the network is a constant injection of current in the soma of all neurons.

destabilizing stimulus, with different patterns of activations but
it will always relax toward one of the stable attractor state [21].
In a winner-take-all regime, since the two populations inhibit
each other, only one population of neurons can be found in
the up state of the network dynamics. The observed behaviour
of our neuromorphic attractor network, when all neurons are
stimulated by a constant injection of current, is an alternation
of perceptual dominance among the two different activity
states with very long time constants, orders of seconds. Fig-
ure 4 shows five seconds of recordings of such behaviour. The
central panel of Fig. 4b, shows the mean firing rate activity
over time of neurons grouped in populations. Continuous green
line depicts neurons in population A, and the dashed blue line
represents neurons in population B. An irregular alternation of
high activity is evident, and only one of the two populations
of neurons can be found in the up state (∼ 80 Hz) of activity:
this is a confirmation that the network is operating in a winner-
take-all regime.

IV. CONCLUSIONS

We demonstrated an implementation in neuromorphic hard-
ware of basic computational primitives used to produce neural
plausible dynamics. In particular, our results well correlate not
only with the behavioural responses (the reaction time and the
accuracy) of subjects, but also to the neural responses in their
cortical areas during a two-choice perceptual discrimination
task. Choice formation and successive behaviour coincide with
the transition from a spontaneous activity state to the elevated
persistent state of activity in a clustered pool of neurons.
An important aspect of this work is that reliable computation
emerges from simple mismatched analog neurons; mismatch
effects are evident in the mean rate plots, of Fig. 4, 1, where
the frequency of the up states differ of about 10%.
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